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ABSTRACT:

Reinforced concrete slabs are designed against failure in flexure and shear at the ultimate limit
state. Generally, little consideration is given to the serviceability limit state. A concrete slab will
spend most of its life at or below its serviceability limit state and should normally never reach its
ultimate limit state.

Two of the most important considerations at the serviceability limit state are deflection and crack
control. This paper, which is an extract from an MSc thesis completed at the University of Cape
Town, concentrates on the short-term maximum deflection of two-way spanning slabs under
service loads.
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Anthony Boting

INTRODUCTION

Reinforced concrefe slabs are designed against fail-
ure in flexure and shear at the uliimate limit state.
Generally, litle consideration is given to the service-
ability limit siate. A concrete slab will spend most of

Antony Bofing was born its life ar or below its serviceability limit state and
in Bloemfontein and should normally never reach its ultimate limit state.
matriculaied at Grey Two of the most important considerations at the ser
College. He completed viceability limit state are: deflection and crack control.
both his B.5¢ (Civil This paper, which is an extract from an M.Sc thesis
Frgineering) and M.Sc completed at the University of Cape Town, concen-
(Civil Engineering] frafes on the shortterm maximum deflection of two-
degrees at the University way spanning slabs under service loads.

of Cape Town. He is

currently employed as a Moment of inertia

Structural Design Engineer
by Henry Fagan and

Pariners in Cape Town.

Deflections are inversely proportional to the moment
of inerfia of the beam under consideration. The pres-
ence of cracks af the serviceability limit state affects
SHORT SYNOPSIS the moment of inertia and has a profound effect on

the deflection.

A method, consisfing of
wo computational
models, was developed
to defermine the
maximum deflection of
two-way spanning, edge
supported, reinforced Other Codes attempt o include the stiffening effect of
concrefe slabs. The first the concrete in fension, once cracked. The most
model defermfned.rhe nofable of these Codes are the American Building
dispersion of a uniformly Code - ACI 318 M - 83" and the Manual on the

disiributed service load. CEB/FIP Model Code?.
acting on the slab. The

second model defermined  The American Code makes use of the Branson® for-
the maximum deflection mula tc determine the "effective moment of inertia”
of the two orthogonal I, of each section along the siructural element.

strips spanning though M, JIM

the region of maximum L= ( M, )Ig+ (1=¢ M, Y1 - eqn i
slab deflection.

A review of Design Codes shows various ways in
which deflections can be calculated. Some Codes
use a conservative approach and suggest the use of
1, the cracked moment of inertia, if the fensile
capacity of the concrefe is exceeded.
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Figure 1 - Instantaneous moment - curvature relationship after

Manual on CEB/FIP Model Code (2!

TECHNICAL PAPER

A METHOD FOR PREDICTING THE DEFLECTION OF
TWO-WAY SPANNNG, EDGE-SUPPORTED,
REINFORCED CONCRETE SLABS

where

I, = moment of inertia of gross concrete
section, negleciing reinforcing steel

I, = moment of inertia of fransformed
allconcrete cracked section

M, = momentat the beam section under
consideration

M, = cracking moment of the concrefe

section

This formula has been verified experimentally and is
regarded as being sufficiently accurate for control of
deflections.

The Manual on the CEB/FIP Model Code? requires
that the curvatures of the siructural element for both
cracked and uncracked sfates be determined. The
uncracked state is referred to as state T and all the
concrete and reinforcement are assumed fo be acrive
both in tension and compression. The cracked state
is referred to as stae II, and the reinforcement is
assumed fo be effective in both tension ‘and com-
pression, but the concrete is only effective in com-
pression. The actual curvature 1/r, is then defer
mined by interpolating between the curvature of the
uncracked state 1/r; and the curvature of the cracked
state 1/r, (figure 1).  This relationship can be
expressed mathematically as:

L ] I
T, = (’QT +§?--- eqn 2

Experimentally, the coefficient ¢ has been defermined
as:

- MI2
+1 'BIBZ(TT) w. eqn3

{ =
= OforM <M,
where
B, = a coefficient characterising the bond
strength of the reinforcing bars
= 1.0 for high bond bars
= 0.5 for smooth bars
B, = a coefficient representing the influ-

ence of the duration of application,
or of repefition of loading

= 1.0 for first loading

= 0.5 for longterm loads, or for a large
number of cycles of load
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M = moment at the section under
consideration

M, = cracking moment

Three methods for the prediction of deflections are
given in the Manual®. The most nofable is the bilin-
=ar method. This is based on the observation that,
for the serviceability limit state, the momentdeflection
relationship may be approximated by a bilinear rela-
tion which represents the overall effect of the moment-
curvature relationship described previously (figure 2).

In equation 3, M, is assumed fo be constant over the
enfire beam element and is faken as equal to the
cracking moment capacity of the critical section,
which is defined as midspan for o beam. A para-
meter M_ is defined as the geometric mean of the
cracking moment M, and the maximum total service
moment My at the critical secfion and is assumed con-
stant over the beam.

M=VM M, ..eqn4

The methods given in both the ACI Code!’ and the
Manual on the CEB/FIP Model Code® have a num-
ber of simplifications and shoricomings. A methed to
predict the maximum deflection of fwoway spanning
slabs needed to be developed. OCne of the wo
approaches given above had to be adopted and it
was decided to use the approach of the CEB/FIP
Model Code. The exact methods given in the
Manual on the Code” are not used, but the underly-
ing theory is used as a basis for the model that is
developed.

COMPUTATIONAL METHOD FOR PREDICTING
MAXIMUM DEFLECTIONS

In addition to the factors which affect beam deflec-
fions, the deflection of a twoway, edge-supported,
rectangular slab panel depends on the boundary
conditions at the supports and on the aspect ratio.
The load on the slab is resisted not only by orthogo-
nal bending moments, but also by twisting moments
and shear.

Two models are developed. One predicis the load
dispersion of a two-way spanning slab and effective-
ly preduces the equivalent loading on strips or beams
spanning in each of the orthogonal directions,” The
second model predicts the probable maximum
deflection of these orthogonal strips or beams span-
ning through the region of maximum slab deflection.

Model 1 for the equivalent load

The slab is divided up in plan info 5 seperate beam
strips in each of the xand ydirections (figure3). Each
sirip consists of five zones. The oufer two zones are of
length L/8, while the three inner zones are of length
L/4. There is a node at the centre of each of the three
inner zones. Each zone has its own sfiffness and
unique porfion of load that it carries. Deflection formu-
lce are sef up in terms of the unknown portions of load

EDGE-SUPPORTED SLABS
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Figure 2 - Instanianeous moment- deflection relationship
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Figure 3 - Division of slab info strips (between dotted lines)
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Figure 4 - Example of division of load onto orthogonal strips
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Deflected shape

This is equivalent to:

Elastic defiection

Plus

Deflection due
3] to cracking

Figure 5 - Deflection Model

Cracking zone

A =

Figure & - Cracking Zone

Figure 7 - Calculation of deflection due to hinge at crack

for each stip by infegrating the shear force equation
three fimes. These equations are defermined for every
support condition that can be encounfered by a beam.

The deflection at each of the nine nodes (numbered
in figure 3) must be the same when determined for the
stips in the x- and y- directions. Strips a-b and gh
have the same support conditions as the portion of
slab that they represent (figure 4). These two strips
infersect ot node 1. If the calculated deflections at
node' 1 for the strips are equal, then strip gh will
carry a; of the load and strip a-b will carry {1- a} of
the load. I the deflections in the orthogonal oairs of
sirips at each of the nine nodes are equal, then a grid
of load dispersions can be defermined.

The inner zones carry the portion of load determined
as described above, while the wo outer zones carry
the full load in only one direction. The bending
moment can be delermined for the loads thus acting
on each strip. The cracking moment for each zone is
also determined.  If the bending moment of a zone
exceeds its cracking moment then o new effective siif-
ness Iy is determined. This stiffness is determined on
the following basis:

If the entire zone is cracked, then the cracked
moment of inertia for that zone is determined
ignoring concrete in tension.

If the entire zone is uncracked, then the uncracked
moment of inertia for that zone is used.

If only @ portion of the zone is cracked, then a lin-
ear interpolation between the cracked and
uncracked moments of inertia is used.

These modified sfiffresses are substituted into the
deflection equations and a new load dispersion pat-
tern calculated. Once ogain a new cracked region
is determined, and if this differs considerably from the
previous one, then the whole procedure 1s repeated.
This iterafion procedure carries on uniil a stable crack-
ing zone for each strip is achieved. This final load
dispersion is the one now used to defermine deflec-
fions. For those slab strips that are stafically indeter-
minate, a check must be made as to whether the plas-
tic moment at the support(s) is exceeded or not. If it
is, then the enfire iteration procedure is repeated from
the start, but the stafically indeterminate slab strip is
now assumed to be effectively discontinuous with
plasiic end moment(s]. When the bending moment
diagram is calculated, the effect of the plastic
moment is faken info consideration.

Model 2 for deflections

When determining the maximum deflection, only the
strip of slab which will contain this meximum deflec-
fion, in each of the x and y-directions, need be con-
sidered. The maximum deflection is then determined
for these two orthogonal slab strips.

If the cracking moment is not exceeded, the deflection
is determined using elastic formulae and uncracked
moments of inerfia.

Concrete Beton 19

No. 80 - April 1996



If the cracking moment is exceeded then the following
model is used. The deflection of @ beam subjected io
cracking is made up of two components. The first con-
fribution is due to an elastic deflection, while the sec-
ond contribution is ascribed to cracking (figure 5). In
order to obfain the cracking hinge rofation @, the zone
of cracking needs fo be identified (figure &).

It is assumed that all the cracking that occurs over this
zone is lumped together to form one single crack af
the posifion of maximum moment. The rofation that
this “hinge” undergoes is equal to the integral of the
curvatures across all cracks in the cracked zone.

In this cracked zone the concrete consiss of cracked
and uncracked sections. Allowance for the cracked por-
fion of the cracked zone can be made by the factor .
Thus, the rofation of the hinge will be equal 1o the inter
grafion of the curvature over this crocked length.

X2 m
0 = r;fx?—EI;dx ooeqn s

This is similar to the development of the bilinear model
used in the Manual on the CEB/FIP Model Code?,
except that in the Manual cracking was assumed to
occur uniformly over the entire element length.

In the case of stafically indeterminate horizental slab
sfrips with downward loading (i.e. propped cantilevers
or beams builkin ot both ends), only the zone in which
the sagging moment exceeds the cracking moment
needs to be considered. A cracking “hinge" of midspan
will always be preceeded by a cracking hinge at the
supporfs for normal uniform leading situations.

Once O is known, Ihe cracking dsflection & can eos-
ily be determined from trigonometry (figure 7). The
hinge is placed at the position of maximum moment.
The distance x is therefore known. Thus

{ = xtan O(L-x) eqn 7

The deflections thus computed are only shartterm
(instantanecus). A computer program was developed
incorporating these two models. The maximum pre-
dicted deflection for a series of slob configurations
were computed and compared fo experimenicl
results.

ANALYSIS OF RESULTS

Figure 8 shows the slab configurations that were test
ed in the laboratory by undergraduate thesis students.
The square slabs have dimensions 1.00 m by 1.00
m. by 0.04 m, while the rectangular slabs have
dimensions 1.40 m by 1.00 m by 0.04 m. A vield
line analysis was performed for each slab configure-
fion to determine the design ulimate load. The
design ultimate load was then divided by a factor of
1.6 to determine the design service load [the dead
load was small at service loading). The maximum
service deflection for soch slab configuration was
oblained from load-ceflection curves.

The results of the computer program are shown in table
1. The first column in the table refers fo the slab config-
uration as shown in figure 8. The second column refers
to the experimentally observed deflection at the maxi-
mum service load for each particular slob.  The next
three columns (3, 4 & 5) refer in lumn to the calculated
elastic deflection, the deflecfion due to cracking and the
total deflection for a strip spanning in the xdirection. The
three columns thereafter (6,7 & 8) are similar, but for a
sfrip spanning in the ydirection. The last two columns (@
& 10) show the average of the two total deflections and
the ratic of this average fotal deflection to the exper-
mentally observed deflection respectively.

The predicted maximum deflection is always higher
than the experimentally’ observed maximum deflec-
fion. The rafio of predicted fo observed deflection
varies from 2.4 to 3.3 with an cverage value of
2.95 for the square slabs and from 2.2 to 3.7 with
an averoge of 2.94 for the rectangular slabs.

Three phenomena are not included in the proposed
models. These are:

i The Poisson effect, where curvature about one
axis will cause secondary reverse |anticlasiic)
curvature about fhe orthogenal axis.

il The surfacesshearing action. The slab is very
stiff in-plone and this action of the edge strips
will prevent the centre of the slab from expand-
ing to permit cracking.

i) The membrane action caused by the supports
restraining the slab from extending or shorten-
ing readily inplane due fo curvature. {This
acfion was not present in the slabs tested in the
laboratory as they were supported on rubber
supports which are very flexible in shear].

These three phenomenon are not easily modelled
and their effects thus cannot be easily quantified.
They will cause the observed deflections to be lower
than the predicted deflections, but the exact exient
cannot be determined.

For the square slabs (1 to 6] the computed deflections
using the proposed model for the x- and y-directions
(columns 5 and 8] generally compare very well,
except for slab 3. An interesting phenomenon is
observed with slabs 2, 3 & 5. In each of these cases
the sirip spanning in the xdirection is not as rigidly
supported as the strip spanning in the y-direcfion. As
a result of this, the strip spanning in the y-direcfion
cfiracts more of the load than the strip in the x-direc-
tion, s is expected. This is confirmed by the maxi-
mum elaslic deflection in the y-direction being higher
than that in the x-direction [column & vs.3). However,
the deflection due to cracking is much higher for the
strip less rigidly supported than the more rigidly sup-
ported skip!  This phenomenon is also cbserved for
the rectangular slabs {7 to 15), with the exception of
slob 14, and is explained below.

EDGE-SUPPORTED SLABS
[ e |
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The model developed for deflection due to cracking
is based on the relationship

X2 M
X2 Elcr

[Refer to figure & for the definition of x; & x,). For two
strips of equal length and sfiffness and the same maxi-
mum moment in sagging, the strip that is less rigidly sup-
poried will have a longer cracked length [x,%;). The
factor £ will be the same for both cases, so conse-
quently the strip less rigidly supported will give a higher
0 and thus a higher deflection due to cracking. If on
the other hand, the two sirips of equal length and stiff
ness have the same cracked lengths, then the less rigidy
supported slab will have a lower maximum moment in
sogging. The value of the integral will therefore be
lower. In addition, the foctor £ is dependent on M.

M, = M M

m max cr
S
IZMmz

M,

cr

OR = 1-BByyr—
lemax

Therefore, the lower the value of M, (for sagging)
the lower the value of £. This will lead to a smaller
0 and thus a lower deflection due fo cracking.

Depending on which of the two cases described is
dominant in each individual slab, it is possible for the
less rigidly supported stip to atiract less load, but to
have a higher deflection due to cracking. This is the
case for the majority of the slabs tested. A solution to
this problem is to redefine M_. IFM_ is token as some
lower value than the CEB definition, then ihe confribu-
tion of the deflecfion due to cracking will be less. In
addition to this, M, must be defined as value that wil
not decrease so much as the degree of fixity of the sup-
porfs increases.  For a sfrip carrying o fixed load, the
absolute value of the maximum bending moment in sag-
ging, with a change of support fixity, The cracking
moment capacity will also have to be included in the
definiion since it is a measure of the beam’s ability fo
withstand concrefe flexural tensile stresses. It is sug-
gested fo take a fraction of the geometric mean of the
maximum moment (whether hogging or sagging| of the
strip and ifs cracking moment capacity in sagging.

&8 Mm :—;f\/Mabs.max 'Mcr

CONCLUSIONS

The first computational model predicts the load dispersion
at only nine points on the slab. IF the slab is divided info a
greater number of arthogonal sfrips with more infersection
points then @ more accurate load dispersion can be found.
The confinuity between strips spanning in the same direc
fion will be vastly improved with the addifion of extra strips
in that direction. The inclusion of forsion in this model
would also be a signfficant improvement, but with mare
ships this complicated refinement is deemed unnecessary.

With the second computational model, the coefficient ¢
determines the contribution of the fension stiffening effect

of the concrete to the overall deflection. This coefficient
needs improving for the proposed model. The cosffi
cient is proporfional to M, which should be redefined
as a fraction (eg. 1/2) of the geometric mean of the
maximum moment of the strip [whether hogging or sag-
ging) and the cracking moment capacity in sagging.

The two proposed models do not predict deflections
accurately enough.  With the above improvements it
will be a useful design aid, but enly if reliable experi-
mental results were available, so that @ more accurate
ratio of computed fo actual deflection can be abfained.
It will quantitatively express the elffect of the surface
shearing acfion and the Poisson effect.  This ralio can
then be incorporated in the design process as a facior
for appropriately reducing the computed deflections.
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SYNOPSIS

A review of Codes of Practice shows that deflections
of twoway spanning slabs are freated superficially.
A method is proposed that defermines the allocation
of a uniformly distributed load to a number of points
on twoway spanning, edgesupported slabs.  The
slab is divided into a set of orthogonal strips and
deflection equations are solved in terms of the load:
ing. Once the load disiribution is known, only the
strip spanning through the maximum region of slab
deflection, in each orthogonal direction, is consid-
ered. The total deflection is composed of an elasiic
deflection and a deflection due to cracking. The
elastic deflection is obtained using the uncracked
moment of inerfia.  The deflection due to cracking is
obtained from integrating the curvatures over a
“cracked zone", using the cracked moment of inerfia.
A factor is introduced to include the fension sfiffening
effect of the concrete. A computer program incorpe-
rating these two models is developed. The results
show that the method overpredicts deflaciions.
Future improvements include an increase of the num-
ber of strips that the slab is divided info and a reduc-

Concrete Beton

22

No. 80 - April 1996



EDGE-SUPPORTED SLABS
e e RO |

Table 1 - Results of Computer Program

Slab Exp. Elas. | Crack | Total Elas. | Crack | Total Ave. Ave

No Defl. Defl. Defl. Defl. | Defl. Defl. Defl. Defl. +

X X X y y Exp.
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1 1.6 0.9 4.3 52 0.9 4.3 5.2 52 3.3
2 - 0.8 3.8 4.7 1.1 3.1 4.2 4.4 -
3 3.0 1.1 9.8 10.9 1.8 4.1 59 8.4 2.8
4 2.7 1.3 5.2 6.5 1.3 52 6.5 6.5 2.4
5 2.3 1.6 8.0 9.6 1.7 4.1 5.8 7.7 3.3
6 - 1.9 5.3 7.2 1.9 5.3 7.2 7.2 -
7 - 1.5 8.8 10.3 1.2 11.0 12.2 11.2 -
8 4.9 2.4 9.0 11.4 1.4 12.9 14.3 12.8 2.6
Q - 1.4 8.1 9.5 1.6 7.4 9.0 9.2 -

10 - 1.6 12.3 13.9 1.9 4.3 6.3 10.1 -

11 52 2.7 2.3 5.0 1.6 16.0 17.6 11.3 2.2

12 3.8 2.6 9.8 12.4 1.7 8.2 9.9 11.2 2.9

13 - 2.6 1.1 3.7 2.1 11 14.0 8.8 -

14 2.9 2.6 10.4 13.0 2:3 6.1 8.3 10.7 3.7

15 2.4 2.9 2.5 555 25 7.9 10.4 7.9 33
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