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ABSTRACT: A set of closed form
design equations for flexural design of
fibre reinforced concrete are presented.
These equations are based on simplified
tensile and compressive constitutive
response and may be used in a limit
state approach or serviceability-based
criterion that limits the effective tensile
strain capacity. The equations allow
generation of flexural moment-curvature
response of a rectangular beam section
for use in structural analysis calculations
in addition to design charts for strain
softening fibre reinforced concrete. To
prevent sudden failure after flexural
cracking and to control crack width,
equations for minimum post-crack tensile
strength are also proposed. The analytical
tensile strain equations proposed for
serviceability limit the average crack width
of structural members. In addition, the bi-
linear moment-curvature model is used in
conjunction with geometrical relationship
between curvature and deflection to
determine short-term deflections of
structural members. An example of a one-
way slab demonstrates the calculation
- steps.
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INTRODUCTION

Fibre reinforced concrete (FRC) can be
considered as a brittle matrix composite
material consisting of cementitious matrix
and discrete fibres. The fibres that are
randomly distributed in the matrix act as
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crack arrestors. Once the matrix cracks
under tension the debonding and pulling
out of fibres dissipate energy, leading to
a substantial increase in toughness™. The
main areas of FRC applications are slabs
on grade, tunnel linings, precast, and
prestressed concrete products. Recently,
elevated slabs of steel fibre-reinforced
concrete (SFRC) have been successfully
used where fibres provide the primary
reinforcement®®. A wide range of fibre-
reinforced concrete systems including
glass fibre-reinforced concrete (GFRC)?,
engineered cementitious composite
(ECC)®8, slurry infiltrated concrete (SIF-
CON)™8, and high performance fibre
reinforced concrete (HPFRC) ®* require
better design guidelines. To standardise
these materials, Naaman and Reinhardt**
defined “strain-hardening” and “strain-
softening” classifications based on tensile
responses. Within the second category,
additional terms of “deflection-hardening”
and “deflection-softening” are defined to
further classify the flexural response.
Despite the fact that FRC has been
used in the construction industry for more
than four decades, applications are still
limited to a few market sectors. This is
mainly due to the lack of standard guide-
lines for design procedures. To facilitate
the design process, technical guidelines
for FRC have been developed by RILEM
committee TC162-TDF for SFRC 1213:14.15.16
during the past 15 years. The committee
proposed three-point bending test of a
notched beam specimen for material
characterisation. The elastically equiva-
lent flexural strength at specific crack
mount opening displacement (CMOD) is
empirically related to the tensile stress-

strain model. The compression response
is described by a parabolic-rectangular
stress strain model. The strain compat-
ibility analysis of a layered beam cross
section is required to determine the
ultimate moment capacity. Similar to the
RILEM, German guidelines for design of
flexural members use the strain compat-
ibility analysis to determine the moment
capacity”. In the UK8, the practice of
FRC traditionally followed the Japanese
Standard JCI-SF4 (1984)%; however, it has
recently shifted towards the RILEM design
methodology. The Italian guideline is also
based on load-deflection curves deduced
from flexural or direct tension test °. The
current US design guidelines for flexural
members are based on empirical equa-
tions of Swamy et al.?* 22, Particular type
of fibres and nature of concrete were not
specified in the guidelines. Henager and
Doherty?® proposed a tensile stress block
for SFRC that is comparable with the
ultimate strength design of ACI 318-05%.
This paper proposes a design method-
ology for strain-softening FRC and consists
of two parts: design for ultimate strength
and design for serviceability. The design
procedures are based on theoretical deri-
vations of Soranakom and Mobasher?-25,
in addition to ACI 318-05%* and RILEM
TC 162-TDF*, Topics include nominal
moment capacity; minimum post crack
tensile strength for flexural cracking;
tensile strain limit; short term deflection
calculations, and a conversion design
chart to correlate traditional reinforced
concrete and FRC systems.
A design example of one-way slab is pre-
sented to illustrate the use of equations
in design of typical structural members.




R

STRAIN-SOFTENING FRC MODEL

Tensile and compressive response of
strain-softening FRC such as steel and
polymeric fibre-reinforced concrete
(SFRC and PFRC) can be simplified to
idealized stress strain models as shown
in Fig. 1(a)&(b). In these materials the
contribution of fibres is mostly apparent
in the post peak tensile region, where
the response is described by a decaying
stress strain relationship. It is however
possible to assume an average constant
post crack tensile strength c, for the
softening response, which can be cor-
related to the fibre volume fraction and
their bond characteristics?*22.
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Fig 2 Idealised material models for strain-
softening fibre-reinforced concrete: (a) tension
model; and (b) compression model.

The following assumptions are made
in the development of the material
models: a) Young’s modulus E for
compression and tension are equal, b)
tension model [Fig. 1(a)] consists of a
linear stress strain response up to the
cracking tensile strain € _, followed by a
constant post crack tensile strength o,
= WEe_ with parameteru (O<pu<1)rep-
resenting the post crack strength as a
fraction of the cracking tensile strength
o, = Ee_, and ¢) compression model
defined by an elastic perfectly plastic
model [Fig. 1(b)] using a yield compres-
sive strain g, = g, with a parameter ®
(0 >1) representing the compressive to
cracking tensile strain ratio.
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Fig 1 - |dealised material modelss for strain-softening fibre - reinforced cocrete: (A) Tension

model; and (b) compression model

Study of material parameters?® reveals
that the ultimate moment capacity
of FRC is significantly affected by the
normalised post crack tensile strength
parameter m while less sensitive to the
compressive to tensile strength ratio w.
In order to minimize the number of ma-
terial parameters, the tensile strength
and Young’s modulus are assumed to
be marginally affected by fibre type and
content and conservatively estimated
by the relationship governing normal
concrete using ACI-318 Sec. 11.2 and
Sec. 8.5.1, respectively.

Gy =t =056,/f, (MPa)

(or=6.7,Jf, (psi)) @)

E=4,733f. (MPa)

(or =57,0004f.  (psi))
)

where £’ is the ultimate uniaxial cylin-
der compressive strength. First crack
tensile strain for FRC can be calculated
assuming Hooke's law as:

e DE

4733\, 57000%,

=148 ustr
= )

o =T

According to the RILEM model**shown
in Fig. 2, the ultimate tensile strain g5
is defined as 0.025. The ultimate com-
pressive strain g_ is limited to 0.0035,
which is the lower bound value of typical
SFRC?"?% and the yield compressive
strength for FRC is adopted as:

oy =0.85f,  (MPaand psi) (4
The two normalised parameters used in
the material models [Fig. 1(a)&(b)] are
summarised as follows:

5 0
lvl="“2‘="£‘
ESCr GCf (5)
G :
e
&r Eey O

(or 0.127\/E (US customary unit))

Note that the coefficients 1.52 and
0.127 used in Eq. (6) are for [’ ex-
pressed in MPa and psi, respectively.
Equation (6) implies that the nor-
malised yield compressive strain m is
also a compressive to tensile strength
ratio.

Research significance of reinforced concrete

The proposed design guideline provides
computational efficiency over the com-
monly used strain compatibility analysis
of a layered beam in determining mo-
ment capacity of FRC members.

The closed form equations and guide-
lines are compatible with the ACI-318
design method procedures while allow-
ing deflection and serviceability criteria
to be calculated, based on fundamen-

tals of structural mechanics.

These computations allow engineers
to reliably design and compare the overall
performance of conventional reinforced
concrete system and FRC.
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Thus, these terms can be used inter-
changeably. For typical f' between
20 and 65 MPa, o varies between 6.8
and 12.8. The tensile and compressive
responses terminate at the normalised
ultimate tensile strain b, and compres-
sive strain A_, respectively.

B & 0025 .,
Ue, flo<io’® 7
e 0o

e 1180 " o

Note that the terms 3 and A without
subscript refer to normalised tensile
strain (g, /e,) and compressive
strain (g, /e_), respectively and are
functions of imposed curvature on a
section.

Moment
curvature
response

For a rectangular section, the deriva-
tions for neutral axis depth ratio k, nor-
malised moment m, and normalised
curvature ¢ are described in an earlier
publication?®®. Fig. 3 shows 3 ranges of
applied top compressive strain O < €_
< g, € N8 g ANAE, SES
or in dimensionless form 0 < A <
l<i<owand® <A <A,

The location of neutral axis pa-
rameter k is derived by solving the
equilibrium of internal forces. The mo-
ment was computed from taking the
force about the neutral axis, while the
curvature is obtained by dividing top
compressive strain with the depth of
neutral axis. The corresponding closed
form solutions for normalised neutral
axis, moment and curvature (k, m, ¢)
are presented in Table 1. Using these
expressions, the moment M and cur-
vature @ represented in terms of their
first cracking values (M_ and @ ) are
defined as:

8CU
1,

csC,bh2
6
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Range k m ]
0<A<1 ~12— -2}‘;;
iehn /—;%:D—_—l er +3/‘)i; UK 5 on ;7
w<i<h, _w2+2,1(2)#f#)+2u_1 Goit-o’ +3/§,12_3ﬂ+2)k2 P

Table 1-Neutral axis depth ratio and normalised moment curvature expression for three ranges of applied nor-

malised top comprehensive strain A.
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Figure 3-Stress-strain diagram at three ranges of
normalised top comprehensive strain \:(a) elastic for
comprehension and tension (0 < A <); (b) elastic for
comprehension but nonlinear for tension (1 < A <w); (c)
plastic for compression and nonlinear for tension (A>w).

2¢
D=0D,; P = hcr 0]

where b and h are width and height of
beam, respectively.

The moment capacity at ultimate com-
pressive strain (A =A_) is very well ap-
proximated by the limit case of (A =<2).
Using the expression for k in range 3

m=M/M,
A

m=1

5
=1 0=,

Figure 4-Normalised moment curvature response
for strain-softening deflection-hardening material
and it is simplified bilinear model.

of Table 1, one obtains the neutral axis

parameter at infinity keo.?®




(11)

By substituting k = k_ and A = « in the
expression for m in range 3 of Table 1,
the ultimate moment capacity, m_is also
obtained

3o

= o (12)
BI-LINEAR MOMENT-
CURVATURE DIAGRAM

For sufficiently high post peak tensile
capacity, the flexural response of FRC
shows no drop in moment capacity after
cracking and is referred to as strain-
softening deflection-hardening.

Fig. 4 shows a typical moment-curva-
ture response for this class of material
generated from Table 1. The smooth
response can be approximated as a
bilinear response using an optimization
approach in the curve fitting.

The termination point of the bi-linear
model was designated as m_, and as-
sumed to be equal to m_, given by Eq.
(12). The intersection point is defined
as the bilinear cracking point (¢, m, )
and is higher than the original cracking
point (¢_, m_). With the predetermined
bi-linear cracking points from material
database covering possible range of

My, =0.743my, +0.174

anel q)bc_r =Mper (13)

The curvature at the ultimate compressive
strain ¢, can be determined by substituting
arelatively large A_, valuein the expression
for kand ¢ in range 3 presented in Table 1.

For example a simplified expression for ¢_,
atiA_, =30is:

—@° +60w+621—1
Ocy = 4
u

(14)

The bilinear model can be used to
obtain the curvature distribution
according to a given moment profile.
The slope in the elastic part is (j)br/mbr
= 1 while the slope in the post crack
region is

q)cu = ¢bcr

0
per
- Mgy = Mper

(15)

Finally, the normalised curvature-mo-
ment relationship can be expressed as:

o = {m
e (bbcr S epc:r (m— mbcr)

for O<m<my,,

ALLOWABLE

TENSILE
STRAIN

For sufficiently high fibre volume frac-
tions and a good bond property, the
ultimate moment capacity of the strain-
softening FRC can be as high as 2.6
times the first cracking moment?®. There
may however be a need to design based
on a limit to the allowable tensile strain
and crack width.

Since many deflection-hardening
FRCs show multiple cracking, the nomi-
nal tensile strain averaged from several
cracks spaced apart is proposed as the
serviceability criterion. This section only
addresses the effect of lower and upper
bounds of the allowable tensile limitand
their effect on service moments.

From the linear strain diagrams in
the post crack ranges [Fig. 3(b)&(c)],
the relationship between normalised
allowable tensile strain §_and the corre-
sponding normalised compressive stain
7»3 at a balanced condition can be writ-
ten as:

7\’8801' = Bagcr

25,29 H i i
FRC, a _Imear regression equation for m>my, = kh h—kh
was established as: (16) (17)
Table 3-Steel fibre reinforced concrete
o . T T T —T ; T ; parameters for RILEM model.
& e e B =60, © = 12 I
% e - V. 3 co Gy Gy, | O3,
R s i i Mmix-|Wpke/m* g | MPa | MPa |MPa|MPa| &1 | £ |e3,
= ﬁa: 20' " /./ ture (]b/yd3) MPa (psi) | (psi) | (psi) | (psi) | (psi) | % % | %
£ 4 T S 31,854 | 302 | 35 | 11| 08
@ B 2 b2 7 N 3 9 5
g | p _ NSC| 25(42) |4 62E + 06)|(4380)| (508) | (160) | (116) | 0-011 | 0-21 | 25
H
2 30,564 266 | 42 | 20 | 1.2
2 gt i NSC| 50(84) |4 23F + 06)|(3858)| (609) | 290)| (174) | 0-014| 0-24 | 25
M 4 38.411 5291 62 | 3.1 | 3.1
gt ] HSC| 60 (101) |5 57k 4 06)| (7673) | (899) | (450) | (450 | 0-016| 0-26 | 25
(o]
< e g o x s m oy Note: Strain at compressive yield stress €., = 0.133%, and ultimate compressive strain
OO 0.2 0.4 0.6 0.8 1 oy = 0.35% for all mixtures. -
Figure 5 Normalized post crack tensile strain, u ’ bl 5-Normalised allowabie: moment.
Range o=6 ] o=12
B, =20 TOUA38u+ 1 +2./38pu+ 1+ 1197p+2
My, ’ (20 + /38 + 1 )7
10 B, =60 2364 /T8 +1 + 2/TIB+ 1+ 107971 +2
‘ 60+ JTI8R+ 1)’
B, =20 18(1444° + 12,3881 — 343) 36(14441° + 30,172 — 6591)
i " (277 + 38p)° (625 + 38 1)
esk b B, =60 18(13.924p° + 95,108 1 — 343) 36(13,924p° + 206,972 — 6591)
2 (757 + 118p)° (1585 + 118p)
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Equation (17) is solved in conjunc-
tion with the neutral axis parameter
k defined in Table 1 for two possible
ranges 2 or 3. This results in two pos-
sibilities of A ;:

N2uP. =211
2uB, —2u+0’ +1
2m

for Ba = Bcrit

for Ba >Bcrit
(18)

o’ +2p-1
s e
- (19)
where B_, is the critical tensile strain.
When B, < B, the parameter A, will
be in between 1 and w (range 2) and
when B_> B_ ' the parameter A, will be
greater than B range 3.

Two levels of normalised allowable
tensile strain B, = 20 and 60 (corre-
sponding to 2360 and 7080 mstr for
the cracking strain of 118 mstr defined
in Eg. (3)) and the lower and upper
bound compressive tensile strength
ratio w = 6 and 12 are evaluated. The
closed form solutions for the allowable
moments corresponding the combina-
tion of these B, and w can be derived by
first substituting the values in Eq. (18),
then substituting the obtained A, and/
or w in the expressions for k and min
range 2 and 3 in Table 3. The final form
of allowable moments in range 2 or 3
(m,,and m,) are presented in Table 2
depending on the value of B_compared
to B,,,as shown in Eq. (19).

Fig. 5 presents normalised allowable
moment for post crack tensile strain 3
in the range of 0.0 - 1.0. The increase in
allowable tensile strain p, from 20 to 60
for each level of w slightly increases the
allowable moment, with the maximum

- difference of only 8.8% at u = 1.0. Thus,
use of lower bound value g = 20 as a
tensile strain criterion is reasonably
safe for preventing excessive cracking
while the moment capacity is slightly
reduced. Note thatat 3 = 20, the allow-
able moment is insensitive to changes
of ® between 6 and 12, while at 8, =
60, only small differences are observed.

Based on this simplification, a con-
servative case of B, =20 and ® = 6 as
presented in Table 2 is proposed as a
tensile strain criterion and summarised
as: (see top of page)

Concrete Beton Journal
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76138u+1+2./38u+1+1197u+2 o _ o< 3512
E 2 a =
= (20+/38u+1) 2u
m, = \
18(1444y° + 1238811 -343) 35+2u
: 5 forERs =200 —— =
(277 +38u) 2u
(20)
Figure 6-Conversion chart between reinforced concrete W =0y 198
system and FRC system. 0 0.2 0.4 0.6 08 1
: : , : . — T T
o}-fc' =27.6 MPa Lo%A- fi=62MPa -2
(4,000 psi) o £ (9,000 psi)
161 foy =483 MPa 54" N e
_ (70,000 psi) 20 % ] -
S 2% N 5.
2 ol =d/h u°b- Nodi2 2
< | % =09 1 Al =207MPa] £
& o8k , i (3,000 psi)_| 08 &£
5 = 1 op =0.7 -
04 = e 0.4
0 L i 1 1 L 1 L | 1 i ' 1 L 0
0 0.001 0.002 0.003
Pg = As/bh

(a) reinforced concrete

(b) fiber-reinforced concrete

ULTIMATE MOMENT CAPACITY

Load and resistance factor design
(LRFD) is based on the reduced nomi-
nal moment capacity q)pM” exceeding
the ultimate factored moment M, that
is determined by linear elastic analysis
and load coefficients in accordance to
ACI 318-05 Sec 9.2. The reduction fac-
tor ¢, addresses the uncertainty of using
post crack tensile strength in predicting
ultimate moment capacity. Based on the
statistical analysis of limited test data®®
avalue ¢ = 0.7 was used in this study.
The nominal moment capacity M. can be
obtained by using Egs. (9)&(12) with the
reduction factor: Alternatively, the nomi-
nal moment capacity can be expressed
as a function of post crack tensile
strength m and compressive strength
¢,’ by substituting Eq. (6) in (21).

¢pMn = ,@pmchr =

6u\/€

GpMy = &LH‘Q\/E

oM\

= ,
6¢pMcr\/€ i E»Mu

O M,

The post crack tensile strength neces-
sary to carry the ultimate moment can
be obtained from Eq. (22) as:

Strain-softening FRC has therefore a
moment capacity that ranges between
1.0 and 2.6 times the cracking moment
(Fig. 5); therefore, it is suitable for slab
applications where internal moment is
relatively low compared to the crack-
ing moment and shear is generally not
critical.

For higher internal moment such as
beams in structure, the use of fibres
may not be sufficient and require ad-
ditional rebar to increase the capacity.

The design of this flexural member is
presented in reference?® while shear ca-
pacity of using fibre-reinforced concrete
can be found in literature®°3%.

3o

—0 M, 2M
(’H‘l-lq)p cr u

(e=1.32for f, inMPa, £=15.8 for f, inpsi)

(22)

(£=1.32 for f, in MPa, £=15.8 for f, in psi)

(23)




Minimum Post Crack
Tensile Capacity for Flexure

To prevent a sudden drop of moment
capacity after initial cracking, a mini-
mum fibre dosage is required. The post
crack tensile strength that maintains a
load capacity equivalent to the cracking
strength level (M = M) is defined as
m_. and obtained by solving Eq. (21)

crit

with a reduction factor ¢, = 1.

T ®

Clit= e
For typical FRC materials with compres-
sive 10 tensile strain ratio w ranging
from 6 - 12 results in p_, = 0.353 -
0.343. A conservative value of p_
= 0.35 therefore ensures post crack
moment capacity higher than the first

cracking moment.

Conversion
Design
Chart

An equivalent flexural FRC system can
be substituted for minimum reinforce-
ment in reinforced concrete structures.
A conversion design chart is presented
to help designers replace the reinforced
concrete system with FRC system that
has the same flexural capacity. The
nominal moment capacity of a single
reinforced concrete section can be
determined by the compressive stress
block concept (ACI Sec 10.2.7)

a
M, :Asfy(d—EJ

where a=Asfy/(O.85fC’b) is the depth
of compressive stress block, A, = pgbh
is the area of tensile steel, P, is the

(25)

A

W/'. 3 . M u,exp M,
kg/m; L, Smid» P kN-m kN-m
Beam | Mixture | (Ib/yd”) | m (ft) | m (ft) [kN (kip) | (kip-ft) | (kip-ft)
10 | 02 | 267 | 534 | 425
Bl | NSC | 25(42) |333y! 80) | 6.0) | (3.94) | (3.13)
- 120 02| 103 | 464 | 425
B2 | NSC | 25(42) l667)| 8.0) | (23) | 3.42) | (3.13)
, 110 | 02 | 271 | 542 | 7.44
B3 | NSC | 5034 |333)| 30)| 6.1) | 4.00) | (5.49)
, 20 | 02 | 169 | 761 | 7.44
B4 | NSC | 5034 |cs7)1 30) | (3.8) | (5.61) | (549
10 | 02 | 634 | 1268 | 1171
B5 | HSC | 60(101) | 333)| g70) | (14.3) | (9.35) | (8.64)
20 | 02 | 215 | 9.68 | 1171
B6 | HSC | 60(10D) | o7yl 810) | 4.8) | (7.14) | (8.64)
Table 5-Comparison of ultimate moment capacity obtained by test results and design equations.
2 2 2, L2
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Figure 7-Geometric relationship between curvature and deflection®>%3,

reinforcement ratio per gross section
bh, and a is the normalised effective
depth (d/h). The reduction factors ¢,
= 0.9 and ¢ = 0.70 are used in the
conversion chart to address the reli-
ability of two reinforcing mechanisms.
For any grade of steel and concrete
strength, a conversion chart can be
generated by Egs. (22) and (25) as
shown by Fig. 6.

The reinforcement ratio p, together
with the normalised effective depth
a determine the moment capacity of
the reinforced concrete system in Fig.
6(a) which can be transferred to the
FRC chart to obtain normalised post
crack tensile strength m in Fig. 6(b).

Table 4—Equivalent steel FRC parameters for the proposed model

(b)
LZ
S = "‘—(2(1’2 +®3)
6
My,exp (kips-ft)
0 3 6 9
e S e S iy 7
L@ o ®M;vs. Myexp A
i | 2 @ & g,Myvs Myexp //" dg
ol equality li,n,e/ 1
7 7 e & -8
£t o s
< 6F 1
¢ @
- ,,60 43
3k - ose
,/ P
o
0 Ey | L 1 L { " | L 0
0 3 6 9 12 15

My, exp (KN-m)

Figure 8-Predicted nominal moment capacity versus
expreimental ultimate moment.

LA G Sy B I, M., M,
Mixture (lb/de) MPa (psi) MPa (psi) MPa (psi) (0] n My m (in.) m (in.) kN-m (kip-ft) KkN-m (kip-ft)
NSC 25(42) |30.2(4381) | 3.5(508) 1.1 (160) 8.63 | 0.31 091 0.2 (8.0) 0.2 (8.0) 4.67 (3.44) 4.25(3.13)
NSC 50 (84) | 26.6(3858) | 4.2(609) 2.0 (290) 6.33 | 048 1.33 0.2 (8.0) 0.2 (8.0) 5.60 (4.13) 7.44 (5.49)
HSC 60 (101) | 52.9(7673) | 6.2 (899) 3.1 (450) 8.53 | 050 | 1.42 0.2 (8.0) 0.2 (8.0) 8.27 (6.10) 11.71 (8.64)
Note: Strain at compressive yield stress &, = 0.133%, and ultimate compressive strain g, = 0.35 % for all mixtures.
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Deflection
calculation for
serviceability

An important aspect of serviceability-
based design is in accurate calculation
of deflections under service load. The
present approach can be used to com-
pute the deflections by integration of
the curvature along the beam length.
Geometric relationship between curva-
ture and deflection have been derived
by Ghali®?=3. The curvature distribution
along the length can be arbitrary; how-
ever, a parabolic or linear shape result
in accurate results while other shapes
result in approximate values.

The sign convention for curvature is
the same as the convention used for
moments. Two typical cases of a simple
beam (or continuous beam) and canti-
lever beam are presented in Fig. 7. The
mid span deflection d of a simple (or
continuous beam) can be computed by:

12
d=—(D; +D, +D
96(1 2 +®3) (26a)

The tip deflection of the cantilever beam
can be computed by:
L2

6-‘——6—(2(1)2 +(I)3) (26b)

where L is the span length, and @, @,
and @, are the curvature at left end,
centre, and right end, respectively. For
short term deflection, the curvatures
@, - d_ due to moment at service loads
can be estimated from Eqgs. (10)&(16).

Model
Prediction

Full scale beam tests from the Brite
Eiram project BRPR-CT98-0813 “Test
and design methods for steel fibre
reinforced concrete” were used in the
model verification®%. The first set of the
experimental programme studied the
effects of concrete strength, fibre dos-
age, and span length on SFRC beams.

Two grades of normal strength con-
crete (NSC) and high strength concrete
(HSC) were used. Normal strength con-
crete used the fibre type RC 65/60 BN
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at 25 and 50 kg/m? (42.1 and 84.3 Ib/
y®) while HSC used fibre type RC 80/60
BP at 60 kg/m?(101.1 Ib/y3). Two span
lengths of 1.0 and 2.0 m (3.33 and 6.67
ft) were used for the same cross section
of 0.20 x 0.20 m (8 x 8 in). Two replicate
samples were tested under four point
bending for each span length while the
spacing between the two point loads was
kept constant at 0.2 m (8 in).

Material properties were characterized
according to the RILEM model as shown
in Fig. 2 and presented in Table 3. Key
strength parameters used in the design
were computed as shown in Table 4: o7
=0:85] 6, =0y o, ={0,* G.)/2.Using
these definitions u, w, M_, and m_, can be
calculated by Eqgs. (5), (6), (9), and (12),
respectively. Nominal moment capacity
M, can be calculated by Eq. (21) with ¢,
= 1. Note that Eq. (21) was used instead
of (22) since ®=0.85f /G, was obtained
directly from Table 3. On the contrary,
Eqg. (22) ignores s, by assuming o =
0.56f % (or 6.7f_°°) and defines ® =
0.85f /o, = 1.3 /%% (oF 0.12771.°%),
Table 5 presents the average test results
of two replicates of the six beams (B1-B6)
series for three mixtures and two span
lengths.

To compare the test results with the
nominal moment capacity M, ultimate
moment of the section Mu,exp was calcu-
lated from the maximum experimental
load-P__ .

X

Mu,exp = P max (L4_ Smid )

(27)
where L is the clear spanand S_, is the
spacing between the load points defined
earlier. The experimental capacity M, _
was compared to the proposed nominal
moment capacity M_in Fig. 8 and they
show good agreement with some varia-
tion. By using the recommended reduc-
tion factor ¢, of 0.7, the reduced moment
capacity (])pMn is obtained well below the
experimentally obtained values °.

Design examples

The design procedure for FRC is best
suited for thin structural applications
such as slabs and wall systems since
size effect is minimal and the applied
moment is relatively low compared to the
cracking moment.

An example is presented to dem-
onstrate the design calculations for a
one-way slab with a single span of 3.5
m (11.67 ft) subjected to a uniformly

distributed live load of 2.0 kN/m? (41.8
Ib/ft?) and superimposed dead load of
0.7 kN/m? (14.6 Ib/ft?). A point load of
4.0 KN/m (0.274 Kips/ft) is applied at
the centre. The design requires use of
SFRC with a compressive strength ¢ ' of
45 MPa (6531 psi) and unit weight of 24
KN/m?® (153 Ib/ft3).

Ultimate moment
capacity

The one-way slab is designed based on 1.0
m strip (3.33 ft). The self weight for an as-
sumed thickness of 0.15 m (6 in) is:

Wy, =0.15x24 = 3.6 kN/m? (75.2 Ib/ft?)

The factored loads according to ACI Sec.
9.2.1are

w, =1.2(3.6+0.7)+1.6(2.0) = 8.36 kN/m >
(174.6 |b/ft?)

P, =1.6(4.0)=6.4 kN/m (0.439 kips/ft)

The maximum moment at mid span due
to the uniform and point loads

Wi~ Pl 836%355 685
u =— = -+
S 8 4

-=18.4 kN-m/m

M,
(4.14 Kip-ft/ft)
Tensile strength and cracking moment
are estimated by Egs. (1)&(9), respec-

tively.

6., =0.56+/45 = 3.75 MPa (544 psi)

_ 5. bhe (3757 10° JX1.0x0.15
6 6

MCr

= 14.06 kN-m/m (3.16 kips-ft/ft)

The required post crack tensile strength
for the ultimate moment M by Eq. (23) is: -

- oM fe
6¢pMcr\/€_§Mu

= 2x18.4:/45 —
6%0.7x14.06\/45 —1.32x18.4

=0.66




Check tensile strain limit ;

The post crack tensile strength is deter-
mined by Eq. (1), G,=Ho, = 0.66x3.75
= 2.48 MPa(360 psi)

Since the allowable tensile strain B, =
20 > (35+2x0.66)/ (2x0.66) =275
in Eq. (20), the allowable moment is cal-
culated as:

18(1444y” +1238811-343)
(277 +38u)°

m

a

18(1444x0.66° +12388x0.66 —343)

1.67

(277 +38%0.66)°

Unfactored loads are used to calculate
the moment at service condition at the
mid span.

2
M wi

L PL_(36+0.7+20)x35° L 4.0x35

S

8 4 8

4

=13.15 kN-m/m (2.96 kips-ft/ft)

The normalised moment at service load is

My 13.15
M=

. =22 0935
M, 14.06

= m =16/ =>"“passed”

Short term deflection

In order to calculate the deflection, the
bilinear curvature-moment relationship
is generated. The compressive to tensile
strength ratiow computed by Eq. (6) is:

w=152Jf, =1.5245 =10.2

Two data points (¢,, m, ) and (¢, m_),
and the slope epu in the post crack
region can be determined by Egs. (12)-
(16).

_ Sou 3x10.2x0.66

Mgy =M., 1.86
oL 10.2+0.66
—0° +60m+ 621—-1
Py = a
%
_—10.2° +60x10.2+62x0.66 -1 _ 2075
4x0.66

My, =0.743m, +0.174=0.743%x1.86+0.174 -
—156

Opor =Mper =1.56

_ Oy =0per 207.5-1.56

8 =686.5
Mgy —Myey  1.86—1.56

For a simple beam case, the curvature
at both ends (®, and @) are zero and
the curvature at midspan @, is deter-
mined by Egs. (10)&(16). Since m_is
less than m__ thus ¢, = m_.

2

-6
%ﬂ)_g%w:

CI)Z =(|)2(Dcr =Mmq 150

=1.471x10° mm™ (3.736 x 10% in%)

Finally, the mid span deflection of the
beam is calculated by the geometric
relationship between curvature and
deflection defined in Eq. (29.1)

=10.85 =38.25 M koh=9.12mm ¢, =38.25 Mpa _
iy e 1 g
| 1
F = 1 Gor =3.75 kh =75 mm
Oy = 3.75 Mpa {3.0in)
Moa (544 psi)
544 pai = M, = 26.15 flox = 26.15
P Meu kﬁ,;ﬁn kN-m/m i kN-m/m
(5.87 kips-ftft} (5.88 kips-fi/fi) (5.88 kips-fi/i)
i i -
(a) (360 psi) (b) (360 psi) (c) (1012 psi)

Fig. 9—Stress distribution at ultimate moment: (a) idealized material models at ultimate
compressive strain; (b) idealized material models at infinite compressive strain; and
(c) elastically equivalent flexural stress.

Concrete Beton Journal
No. 124 « March 2010

13




N

4 [
3 i

Short term defleption

1= =502
S [ DD e
96( i (

1.471><10‘6)‘

=0.188 mm (0.0074 in)

Note that in order to check the deflection limit for each ap-
plication, long term effects such as creep and shrinkage
must be taken into account. This aspect is beyond the scope
of this paper.

Stress distributions

In order to demonstrate the differences between the present
method and the commonly used elastically equivalent flexural
strength o, stress distribution across the beam section at
ultimate compressive strain and at infinite strain are compared
with the elastic flexural stress. The neutral axis at ultimate
compressive strain € of 0.0035, in addition to the ultimate
moment are obtained by substituting L_ = 30 in the expres-
sions for k and m in range 3 of Table 1.

21,
Key = 5)
—0° +2h (O+p)+2u—1
- - 2%0.66x30 =
_10.22 +2%30(10.2+0.66)+2%0.66—1
kouh=0.0723x150 = 10.85 mm
30h..2 — @ +30h. 2 =3+ 2k, 2
mcu:( cu !‘L2cu U ) cu _3“(2kcu_1)
7\'cu =
(3x1o.2 %302 -10.23 +3x0.66x30% -3 xo.66+2)
= 302
—3x0.66(2x0.0724 1)

=1.858

My, = Mo M,, = 1.858x14.06 = 26.12 kN-m/m

(5.87 KIPS-FT/FT)

The neutral axis parameter and moment at infinite compres-
sive strain are obtained by Egs. (9), (11)&(12).

k_h= H h= 0o x150=9.12 mm (0.36in)
o+ 10.2+0.66
MmO
OHL 10.2+0.66

=26.15 kN-m/m (5.88 kips-ft/ft)
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The elastically equivalent flexural strength correspond-
ing to the nominal moment of 26.15 kN-m/m is deter-
mined by the flexure formula.

M, (26.15x10°%)x0.15 /2
! 1.0x0:15° /12
=6.97 MPa

Ge,ﬂex =

(1012 psi)

Stress distributions calculated by the three approaches
are compared in Fig. 9. It can be seen that the post
crack tensile strength between the idealized material
models at ultimate compressive strain (g, = 0.0035)
and at infinity (¢, = =) are the same at ¢ = 2.48 MPa
(360 psi). This level of post crack stress is much smaller
than the elastically equivalent flexural strength 6_ _ of
6.97 MPa (1012 psi). On the other hand the compres-
sive stress at ultimate strain and at infinity are the same
ato,, = 38.25 MPa (5552 psi) which is much higher
than o, of 6.97 MPa (1012 psi). This example points
out the inadequacies of several inverse analysis tech-
niques that have been used to obtain residual tensile
capacity such as the average residual stress method
(ASTM C 1399-04)% which report material strengths
in terms of equivalent elastic values. Designers should
be aware of the shortcomings of these methods and
approaches that determine member capacity.

The neutral axis of the idealized model at ultimate
compressive strain is slightly higher than the neutral
axis at infinity. However, the moment capacities are
quite close to one another (26.12 vs. 26.15 kN-m/m).
This is due to the elastic stress regions near the neutral
axis decreasing while the plastic tensile regions increase.
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Conclusions

A design guideline for strain-softening FRC is presented

“using closed form analytical equations that relate geo-

metrical and material properties to moment and curva-
ture capacity. Conservative reduction factors are intro-
duced for using post crack tensile strength in design and
a conversion design chart is proposed for developing FRC
systems equivalent to traditional reinforced concretes.

The moment-curvature response for a strain-softening
deflection-hardening FRC can be approximated by a
bi-linear model while geometric relationship between
curvature and deflection can be used for serviceability
deflection checks.
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