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ABSTRACT
Premature concrete degradation due to rebar corrosion has many socio-economic implications of great significance. These 
include the direct costs of maintaining and repairing structures in service, as well as the indirect costs resulting from production 
losses and diminishing economic growth. Insufficient cover quality and cover depths are major causes of premature deterioration 
on new structures, however hydrophobic impregnation in the form of silanes may be used to reinstate the durability of 
the affected structures. The silane product adheres to the capillary pores in the concrete cover, making the pore surface 
water-repellent. This reduces the ingress of dissolved deleterious species (chlorides) and subsequently minimises the risk of 
reinforcement corrosion initiation. Based on bulk diffusion testing of various concrete types, the objective of this study was to 
evaluate and quantify the influence of silane impregnation as a remedial measure for poor quality or insufficient cover depth 
in newly constructed structures and ultimately predict the service life extension possible for specific cover depths. The treated 
concrete samples showed suppressed chloride ingress, and lower chloride surface concentration (Cs) and apparent chloride 
diffusion coefficient (Da) were recorded. The overall results indicate that the time to corrosion initiation in reinforced concrete 
structures with inadequate cover depth and quality, of any binder type, can be functionally extended using hydrophobic 
(silane) impregnation, provided proper surface preparation and application methods are employed.
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ABSTRACT
Premature concrete degradation due to rebar corrosion has many 
socio-economic implications of great significance. These include the 
direct costs of maintaining and repairing structures in service, as well 
as the indirect costs resulting from production losses and diminishing 
economic growth. Insufficient cover quality and cover depths are 
major causes of premature deterioration on new structures, however 
hydrophobic impregnation in the form of silanes may be used to 
reinstate the durability of the affected structures. The silane product 
adheres to the capillary pores in the concrete cover, making the pore 
surface water-repellent. This reduces the ingress of dissolved deleterious 
species (chlorides) and subsequently minimises the risk of reinforcement 
corrosion initiation. Based on bulk diffusion testing of various concrete 
types, the objective of this study was to evaluate and quantify the 
influence of silane impregnation as a remedial measure for poor 
quality or insufficient cover depth in newly constructed structures and 
ultimately predict the service life extension possible for specific cover 
depths. The treated concrete samples showed suppressed chloride 
ingress, and lower chloride surface concentration (Cs) and apparent 
chloride diffusion coefficient (Da) were recorded. The overall results 
indicate that the time to corrosion initiation in reinforced concrete 
structures with inadequate cover depth and quality, of any binder type, 
can be functionally extended using hydrophobic (silane) impregnation, 
provided proper surface preparation and application methods are 
employed.

Keywords: Concrete durability; Chloride ingress; Bulk Diffusion; Silane 
impregnation; Corrosion initiation.

1. INTRODUCTION
Over the last few decades, premature degradation of reinforced concrete 
structures due to reinforcement corrosion resulting from chloride 
ingress has become a worldwide concern. With increasing demand 
for infrastructure and subsequent expansion of the built environment, 
there is greater need for new concrete structures to withstand and 
perform in corrosive environments. It is for this reason that designing 
for durability has gained significant attention from Engineers and other 
stakeholders in the construction industry [1]. 

The capacity for concrete to resist the penetration of deleterious 
species such as the water-soluble chlorides depends on the quality 

and depth of the concrete cover. Concerning cover quality, mix 
composition and construction procedures have a major influence and 
need to be carefully controlled [2]. There are various protective methods 
for reinforced concrete structures aimed at improving their durability 
properties. One of these methods relates to hydrophobic treatments, 
which assist in reducing capillary absorption of water, and thus reduce 
the diffusion of chloride ions and prolong the corrosion initiation  
phase [1, 3]. Hydrophobic (silane) impregnations provide water-repellent 
surfaces and are typically applied by spraying or brushing and are 
absorbed into the concrete by capillary action [4, 5]. Numerous studies 
have shown that silane impregnation can successfully be applied to 
reduce chloride ingress into the concrete cover, which is evident in a 
reduction of both chloride surface concentrations and chloride diffusion 
coefficients [6, 7, 8, 9, 10]. 

However, there is limited work on modelling the service life of 
silane treated concrete and the quantification of the effect that silane 
treatment has on chloride ingress. The motivation for this study was 
therefore to investigate by how much the time to corrosion initiation 
and hence the service life of reinforced concrete may be extended using 
hydrophobic impregnation. This included evaluating the performance 
of silane treatment as a remedial measure to inadequate cover depth 
or quality in aggressive environments. It must be noted that this study 
is applicable to newly constructed structures, on which the treatment 
is applied prior to chloride ingress; the repair of existing, already 
deteriorated structures was not considered explicitly. Furthermore, the 
effectiveness of silane impregnation can decrease with time due to 
UV radiation, thermal shocks, abrasion and carbonation [11,12]. Hence, 
the results presented in this paper are based on the presumption that 
the water repellent product is reapplied at regular time intervals (every  
10-15 years) to ensure that the protective measure is sustained [5, 13].

2. METHODOLOGY
2.1. Mix composition and specimen manufacture
Concrete samples of two w/b ratios, 0.45 and 0.60 and four different 
binder types (CEM I 52.5N, Fly-ash (FA) at 30% replacement level, 
Ground granulated Corex slag (GGCS) at 50% replacement level, and 
CEM III/B 42.5N), resulting in 8 different mixes (Table 1) were cast. CEM 
III/B 42.5N, manufactured by ENCI Netherlands [14] and containing 66-
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80% Ground granulated Blastfurnace slag 
(GGBS), was included to make this research 
internationally relevant. A 19-mm local 
Greywacke was used as coarse aggregate. The 
fine aggregate consisted of a 50/50 blend of 
crusher dust (Greywacke) and dune sand. 

Demoulding was performed 24 hours after 
casting, after which each of the specimens 
was covered with a plastic wrap. The 
specimens were then stored in a controlled 
environment maintained at a temperature 
of 23 + 2°C and relative humidity (R.H.) of 
63 + 2%. The specimens were unwrapped 
after 7 days before being placed back in the 
aforementioned environment to cure in air 
until the age of 56 days.

One of the objectives of this work was 
to evaluate the effectiveness of hydrophobic 
(silane) impregnation as a remedial measure 
for poor quality (high penetrability) cover 
concrete. Hence, poor quality concrete was 
produced by exposing the concrete specimens 
to relatively high temperatures at early age 
(after demoulding) for 6 hours (Mix 2 - 80°C, 
Mix 4 - 50°C, Mix 6 - 50°C and Mix 8 - 30°C). 
Higher (80°C) and lower (30°C) temperatures 
were used with Mix 2 and Mix 8 respectively 
as poor quality concrete was not obtained 
at 50°C. A similar method was described in 
[15]. After that, the specimens were placed in 
a controlled environment maintained at 23 + 
2°C and R.H. of 63 + 2% until the age of 56 
days.

The hydrophobic impregnation product 
used in this work was Sikagard®-706 Thixo [16]. 
This is a silane-based cream that was applied 

to the specimens at 28 days. The product 
data sheet [17] specifies the application of 1-2 
coats at a consumption of 200-300 g/m2 per 
coat.  Hence, a total consumption of 400 g/
m2 was used, representing the minimum 
specified amount. The mass of product was 
varied according to the area of concrete 
treated so that a constant consumption 
amount of 400 g/m2 was used at all times. 
The treated specimens were placed back in 
the aforementioned controlled environmental 
room until the age of 56 days.

2.2. Experimental investigations
To characterise the pore structure and 
penetrability of the specimens, Oxygen 
Permeability Index (OPI) and Water Sorptivity 
Index (WSI) tests were performed [19-23], the 
results of which were already discussed in [18]. 

Impregnation depths were measured 
28 days after silane treatment following the 
recommendations given in BS EN 1504-2 
(2004) [24]. At a specimen age of 8 weeks, 
bulk diffusion tests were initiated, conducted 
in accordance with ASTM C1556 (2004) [25]. 
Six (3 treated/3 untreated) test specimens 
(100 mm cubes) were used per mix. An 
epoxy resin was applied to all the sides of 
the test specimens, except for the exposure 
surface, to ensure unidirectional chloride 
ingress. The samples were then immersed 
in 165g/L sodium chloride solution at 10 
+ 5 mm head for 80 days. The exposure 
was conducted in a controlled environment 
maintained at 23 + 2°C and 53 + 2% R.H. 
After the exposure period, the samples were 

Table 1:. Mix composition

 Mix 1 Mix 2    Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8
Material (kg/m3) CEM CEM  30%   30%  50%  50%  CEM CEM
 I I FA FA GGCS  GGCS  III/B  III/B 

Water to binder 
 0.45 0.60 0.45 0.60 0.45 0.60 0.45 0.60 
ratio (w/b) 

Cement 
 - - - - - - 411 308
(CEM III/B 42.5N)

Cement 
 411 308 288 216 206 154 - -
(CEM I 52.5N) 

Extender (FA) - - 123 93 - - - -

Extender (GGCS) - - - - 206 154 - -

Fine aggregate  852 944 812 914 838 934 826 926

Coarse aggregate  1040 1040 1040 1040 1040 1040 1040 1040

Water 185 185 185 185 185 185 185 185

Total binder (kg/m3) 411 308 411 308 411 308 411 308

Slump (mm) 70 60 90 65 75 60 70 70

taken out of the sodium chloride solution 
and sliced into increments of 2 mm and 5 
mm for concretes with w/b = 0.4 and w/b 
= 0.65 respectively. These slices were further 
processed by pulverizing and milling to obtain 
powder samples of approximately 10 g. A 
potentiometric titrator was used to determine 
the acid soluble chloride ion content, i.e. total 
chloride content, in accordance with ASTM 
C1152 (2012) [26]. For each depth increment, 
the average value obtained from 3 specimens 
was used in the analysis.  

3. 3. RESULTS AND DISCUSSIONS
3.1. Concrete material properties and 

silane penetration depths
The test results used to characterise the various 
concrete mixes, i.e. compressive strength 
and penetrability values, as well as silane 
penetration depths (as discussed in detail 
in [18]), are summarised in Table 2. The main 
mixes (Mix 1-8) achieved OPI values between 
9.90 and 10.67, indicating a generally good 
to excellent concrete quality with regards 
to penetrability. The poor-quality mixes 
generally recorded lower OPI values relative 
to their respective controls, indicating that the 
treatment of these samples was successful in 
relation to producing concrete with potentially 
lower durability. 

Silane penetration depths increased with 
increasing w/b ratios and reduced concrete 
quality, with “poor quality” mixes typically 
having noteworthy higher penetration depths, 
compared to their respective control samples. 
This was expected from previous studies [28, 29, 

30]. Notably, silane penetration depths were 
found to be very closely related to the OPI 
values, as discussed in [18].

Silane treated concrete surfaces had 
significantly lower water absorption relative 
to untreated concrete, with treated samples 
hardly permitting any water ingress during 
the WSI test [18]. The results already discussed 
in [18] also suggest that the sorptivity of poor-
quality concrete can be substantially improved 
through the application of silane impregnation. 
However, it must be emphasized that the 
resistance to capillary absorption is only 
increased within the impregnated layer; the 
remainder of the concrete is not affected in 
its properties. 
 

3.2 Bulk diffusion
The chloride penetration profiles obtained in 
the bulk diffusion tests are shown in Figures 
1 - 8. Three untreated and three treated  
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Fig. 2. Chloride profiles, bulk diffusion test results, CEM I concretes (Mix 2 and Mix 2 Poor) 
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Fig. 1. Chloride profiles, bulk diffusion test results, CEM I concrete, (Mix 1)   
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100 mm cubes were used per mix. The figures 
contain error bars indicating the STDV of the 
three specimens tested per depth increment. 
Owing to the overlap of the error bars, the 
influence of w/b ratio and binder type on the 
near surface concentration in the untreated 
mixes was not evident. Significantly less 
chloride ion ingress was noted in the lower 
w/b slag mixes (Mix 5, Mix 7). This is ascribed 
to the lower porosity and higher chloride 
binding capacity of the supplementary 
cementitious material [31, 32, 33]. Higher chloride 
penetration was noted in the poor-quality 
mixes relative to their respective control mixes, 
as expected [31, 34].

Generally lower near surface chloride 
concentrations were observed in the silane 
treated concrete due to lower capillary 
absorption. Chloride ion penetration in the 
silane treated samples was lower than in the 
untreated samples, and the effect was more 
apparent in the slag mixes. Considering the 
treated mixes with w/b = 0.45, the chloride 
penetration depth was approximately 20 
mm, 22 mm, 5 mm and 2 mm in Mix 1  
(CEM I), Mix 3 (FA), Mix 5 (GGCS) and Mix 7 
(CEM III/B) respectively. For the treated mixes 
with w/b = 0.6 (main and poor quality), no 
significant chloride penetration was noted 
beyond 10 mm. As a consequence of the 
reduced chloride penetration into the concrete 
cover, the quantity of chloride ions available 
for diffusion deeper into the concrete would 
be lessened [8].

Table 2: Concrete properties and silane penetration depths

    Mix 2    Mix 4   Mix 6   Mix 8 Mix no Mix 1 Mix 2  Mix 3 Mix 4  Mix 5 Mix 6  Mix 7 Mix 8    (Poor)    (Poor)    (Poor)    (Poor)

     30%  30% 30% 50%  50% 50%  CEM CEM CEM
Binder  CEM I CEM I CEM I
     FA FA FA GGCS GGCS GGCS III/B III/B III/B

w/b  0.45 0.60 0.60 0.45 0.60 0.60 0.45 0.60 0.60 0.45 0.60 0.60

fc (28d) [MPa] 66.7 47.7 31.6 55.3 35.6 24.4 63.1 49.2 26.2 58.5 45.4 27.5

 [log 
  10.54 9.95 9.91 10.06 10.04 9.45 10.34 9.90 9.22 10.67 10.32 9.54
 kOPI] 

 Class1 Excellent Good Good Excellent Excellent Poor Excellent Good Poor Excellent Excellent Good

Porosity (%) 9.0 11.9 12.3 9.5 10.9 12.8 7.3 8.8 12.0 7.7 9.8 14.4

Silane pene- 
  5.2 7.6 8.0 6.7 7.3 8.7 5.5 6.9 9.9 3.5 5.1 7.8
tration [mm]

1 Concrete durability classification (general quality indicator), according to South African experience and practice (OPI > 10.0: excellent;  
OPI 9.5 – 10: good; OPI < 9.5: poor) [27]

Figure 1: Chloride profiles, bulk diffusion test results, CEM I concrete (Mix 1).

Figure 2: Chloride profiles, bulk diffusion test results, CEM I concretes (Mix 2 and Mix 2 Poor).

OPI
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Fig. 3. Chloride profiles, bulk diffusion test results, FA concrete, (Mix 3)   
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Fig. 4. Chloride profiles, bulk diffusion test results, FA concretes (Mix 4 and Mix 4 Poor) 
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Fig. 5. Chloride profiles, bulk diffusion test results, GGCS concrete (Mix 5) 
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Fig. 6. Chloride profiles, bulk diffusion test results, GGCS concretes (Mix 6 and Mix 6 Poor) 
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Fig. 7. Chloride profiles, bulk diffusion test results, CEM III/B concrete, (Mix 7)   
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Fig. 8. Chloride profiles, bulk diffusion test results, CEM III/B concretes (Mix 8 and Mix 8 Poor) 
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Figure 3: Chloride profiles, bulk diffusion test results, FA concrete, (Mix 3). Figure 7: Chloride profiles, bulk diffusion test results, CEM III/B 
concrete, (Mix 7)

Figure 4: Chloride profiles, bulk diffusion test results, FA concretes  
(Mix 4 and Mix 4 Poor)

Figure 8: Chloride profiles, bulk diffusion test results, CEM III/B 
concretes (Mix 8 and Mix 8 Poor).

Figure 5: Chloride profiles, bulk diffusion test results, GGCS concrete  
(Mix 5).

Figure 6: Chloride profiles, bulk diffusion test results, GGCS concretes  
(Mix 6 and Mix 6 Poor).

4. LONG-TERM MODELLING OF CHLORIDE INGRESS
4.1 Curve fitting (non-linear regression) of experimental data to 

obtain Cs and Da
The chloride profiling data was curve-fitted (Figure 9) to the error 
function solution of Fick’s second law of diffusion [35] to obtain two 
regression parameters (surface chloride concentration/Cs) and (apparent 
chloride diffusion coefficient/Da) for the untreated and treated concrete 
mixes. 

C(x,t) = Cs – (Cs – CI ) ∙ erf    (1)

where,
C (x, t) – chloride content at depth x (m) at time t (s)
Cs – surface chloride content (% by mass of binder)
Ci – initial chloride content (set to 0% by mass of binder)
Da – apparent chloride diffusion coefficient (m2/s)
t – time (set to 80 days (in [s]), which is the duration of ponding with 
sodium chloride solution)
x – depth from the surface (m)

The results of the curve fitting are presented in Table 3. The surface 
chloride concentration was observed to increase with higher w/b 
ratios, which was mostly apparent in the GGCS and CEM III/B samples. 
Due to the overlapping results, the influence of the binder type on Cs 
was unclear. The poor-quality mixes generally recorded lower surface 
chloride contents relative to their respective control mixes. This is 
because the significantly higher diffusion coefficient (Da/m2s-1) of these 

x

√ 4Dat
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mixes allowed chloride ions to diffuse deeper inside the concrete, thus 
reducing the chloride concentration at the surface [36]. 

Silane treatment generally reduced Cs values by about 50%-80%, 
compared to the respective untreated mixes, with the exception of 
Mixes 1, 2, 6 and 7, in which a reduction of 10%-20% was detected. 
The main reason for the reduction in Cs in treated samples is the 
reduction in absorptivity, as discussed earlier. 

The apparent chloride diffusion coefficients (Da) decreased with 
lower w/b ratios and the use of slag, as expected from the pore 
structure refinement and, in case of the slag mixes, chloride binding [32, 

33]. The poor-quality concrete showed higher apparent chloride diffusion 
coefficients in comparison to their respective control mixes, which was 
also anticipated. The treated samples had significantly lower apparent 
chloride diffusion coefficient values than the untreated samples, with 
reductions ranging from 66% to 99% and only 3 mixes showing 
a reduction smaller than 80%. As the ingress of chlorides  into the 
concrete cover is reduced, the quantity of chloride ions available for 
diffusion deeper into the concrete is minimised. Thus, the chloride 
profiles are steeper in silane treated concrete, which results in smaller 
diffusion coefficients. A higher percentage reduction in chloride 
diffusion coefficients was observed in the poor-quality mixes, which can 
be attributed to the higher penetration depths of the silane in these 
concretes. 

4.2 Modelling of long-term chloride ingress in situ
The short-term chloride ingress characteristics (Cs and Da) measured in 
the bulk diffusion test were used to predict long-term chloride ingress 
in concrete structures in the tidal/splash zone and atmospheric exposure 
zone, with the aim of quantifying the influence of hydrophobic 
treatments on the service life of reinforced concrete structures in marine 
exposure conditions. 

The apparent chloride diffusion coefficients used in the predictions 
were those obtained by curve fitting the chloride profiling data to a 
solution of Fick’s second law of diffusion, as discussed above. The time 
dependency of the diffusion coefficient D(t), taking into considera-
tion the reduction of chloride diffusivity with time, is described by  
Equation 2 [29, 37].

TECHNICAL PAPER

D(t) = D0          
n

  (2) 

where,
D0 – diffusion coefficient (m2/s) at a reference time t0 (set at 136 days 
(in [s]), which refers to the age at which the concrete specimens were 
tested for chloride content (profiling))
n – aging coefficient (reduction factor)
t – time (s)

The reduction factor (n) for various binder types and exposure conditions 
was obtained from literature [37, 38], as shown in Table 4. The reduction 
factor (n) can theoretically be affected by hydrophobic impregnation of 
concrete, however, to simplify the chloride ingress predictions, the same 
n value was used for untreated and treated concrete.

The chloride surface concentrations (Cs/%) used in the prediction of 
in-situ chloride ingress for the untreated concrete mixes were obtained 
from literature [39, 40], based on measured data from marine concrete 
structures and field exposed specimens (Table 4). 

The hydrophobic treatment had an effect on the chloride surface 
concentrations measured in the bulk diffusion test, as discussed earlier. 
Generally, surface concentrations on treated samples were lower, 
compared to untreated samples made from the same concrete, as 
expected. It can therefore be assumed that the hydrophobic treatment 
also reduces Cs values in in-situ concrete structures. To account for 
this effect in the modelling of long-term chloride ingress in-situ, the 
surface concentrations in Table 4 were factored by the ratio (Cst/Csu) 
to calculate chloride surface contents for the treated concrete, where 
Cst and Csu are the extrapolated surface chloride  concentrations (%) 
for the treated and untreated samples (obtained from curve fitting of 
experimental data) respectively. 

4.3 Predicted time to reinforcement corrosion initiation 
The predicted time to reinforcement corrosion initiation depends on the 
chloride ingress characteristics, quantified by Cs, Da and the chloride 
threshold value for corrosion initiation. The latter was assumed to 
be 0.4% by mass of binder, corresponding to the threshold chloride 
content commonly used in service life modelling [41, 42, 43].

t0

t

Table 3: Curve fitting results

    Untreated Treated % Reduction

   Cs (% by mass   Cs (% by massMix number Binder w/b    Da (m2/s) Cs Da   of binder) Da (m2/s) of binder) 

Mix 1 CEM I 0.45 6.0 4.02E-12 5.1 1.09E-12 15 73

Mix 2 CEM I 0.60 6.6 1.77E-11 5.8 9.66E-13 12 95

Mix 2 Poor CEM I 0.60 4.3 6.62E-11 2.2 1.08E-12 48 98

Mix 3 CEM I/FA 0.45 5.4 6.16E-12 2.4 2.64E-13 55 96

Mix 4 CEM I/FA 0.60 6.4 1.66E-11 1.2 2.81E-12 82 83

Mix 4 Poor CEM I/FA 0.60 4.2 1.42E-08 0.6 1.28E-12 87 99

Mix 5 CEM I/GGCS 0.45 7.4 7.03E-13 3.2 1.03E-13 57 85

Mix 6 CEM I/GGCS 0.60 11.0 2.63E-12 8.6 6.30E-13 22 76

Mix 6 Poor CEM I/GGCS 0.60 5.8 5.42E-11 1.6 1.57E-12 72 97

Mix 7 CEM III/B 0.45 4.9 1.35E-12 4.3 4.49E-14 11 97

Mix 8 CEM III/B 0.60 9.3 1.99E-12 4.7 7.86E-13 50 61

Mix 8 Poor CEM III/B 0.60 5.6 6.51E-11 1.0 2.87E-12 82 96
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x

√ 4Da       
n tt0

t

Table 4: Ageing coefficients (n) for various binders and exposure 
class [37,38], and chloride surface concentrations (% by mass of binder) 
– adapted from [39,40]

 Tidal/splash zone  Atmospheric zone
Concrete type (XS3)  (XS1)
 n  Cs (%) n  Cs (%)

CEM I 0.4 4.0 0.6 2.00

CEM I with 30% FA 0.7 5.0 0.8 2.50

CEM I with 50% GGCS 0.45 6.0 0.65 3.00

CEM III/B (70% GGBS) 0.5 5.0 0.7 2.50

Chloride ingress in untreated and silane treated concrete was 
modelled using a modified mathematical solution to Fick’s second law 
of diffusion [44, 45]: 

C(x,t) = C  – (Cs – Ci ) ∙ erf     (3)

where,
C (x,t) – chloride content at depth x (m) at time t (s)
Cs – surface chloride concentration (% by mass of binder)
Ci – initial chloride content (set to 0% by mass of binder)
Da – apparent chloride diffusion coefficient (m2/s) at 
reference time (t0/s)
t0 – age at testing (136 days/11750400 s)
t – time (s)
x – cover depth (m)
n – ageing coefficient

Hence by fixing the chloride concentration at depth (x/m) and time (t/s) 
to the critical chloride threshold (Ccr = 0.4% by mass of binder), initial 
chloride content to 0% by mass of binder, Equation 3 was rearranged 
to make the cover depth (x/m) the subject ofthe formula:

Ccr = Cs – Cs ∙ erf (4) 

x = erf -1                 ∙   (5) 

The identified values for Cs, Da and ageing coefficient (n) for each mix, 
as presented above, were incorporated into Equation 5 to obtain the 
penetration depth of the critical chloride content (0.4% by mass of 
binder) with time. For typical construction projects in South Africa, 
concrete mixes with a w/b ratio of around 0.45 would be used in 
extreme marine exposure conditions (tidal/splash zone /XS3), while 
more conventional mixes with a higher w/b ratio of around 0.60 are 
typically used under less severe exposure conditions (atmospheric zone/
XS1). Hence, the results obtained in this research for mixes with w/b 
ratios of 0.45 and 0.60 were utilized in the prediction of chloride ingress 
in the tidal/splash (XS3) and atmospheric (XS1) zones respectively. 

Figure 9 shows the predicted time to corrosion initiation, in relation 
to cover depth, for all specimens of w/b ratio = 0.45 (Mixes 1, 3, 5, and 
7), which were modelled for tidal/splash zone exposure. Rapid chloride 
penetration was predicted in the first 20 mm depth of the untreated 
concrete mixes within the first few years, regardless of the concrete 
type, as indicated by the initially very steep curves. 

 

Fig. 9. Time evolution of the critical chloride threshold for all mixes with w/b = 0.45, tidal/splash 
zone 
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Figure 9: Time evolution of the critical chloride threshold for all mixes 
with w/b = 0.45, tidal/splash zone.

Figure 10: Time evolution of the critical chloride threshold for 
CEM I mixes, w/b = 0.60, atmospheric exposure zone.Cs – Ccr      
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Fig. 10. Time evolution of the critical chloride threshold for CEM I mixes, w/b = 0.60, atmospheric 
exposure zone 
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The chloride diffusion coefficient, which is influenced by the 
continuous cement hydration reactions that decrease capillary porosity 
decreases with time, yielding a corresponding decrease in the rate of 
chloride ingress. Figure 10 shows an example (Mix 2) of the predicted 
time to corrosion initiation, in relation to concrete cover depth, for 
specimens with a w/b ratio of 0.60, including the poor-quality version, 
which were modelled for atmospheric exposure. The critical chloride 
threshold (0.4% by mass of binder) reached 50 mm within only a 
few years in all untreated poor-quality concrete mixes. These results 
indicated that relatively large cover depths are necessary to have any 
useful service life (initiation period), suggesting that the untreated poor-
quality concrete mixes were unsuitable from a durability perspective. 

Chloride ingress also occurred rapidly in the treated main and poor-
quality concrete mixes. However, the predicted depth at which the 
critical chloride threshold is attained after the first few years is limited to 
5-10 mm. For the same time to corrosion initiation, lower cover depths 
are required using silane-impregnated concrete. Better performance 
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was achieved (lower rate of chloride ingress was predicted) in the 
treated poor-quality mixes compared to their respective treated control 
mixes, which was a result of the higher silane penetration depth in 
these mixes. 

Table 5: Time to corrosion initiation in relation to different cover depths

  Time to corrosion initiation (years)

 Mix no cover 20 mm cover 30 mm cover 40 mm cover 50 mm

  Untreated Treated Untreated Treated Untreated Treated Untreated Treated

 Mix 1 <1 8 3 30 8 79 17 >100

Tidal/splash Mix 3 <1 >100 4 >100 25 >100 >100 >100

(XS3) Mix 5 13 >100 56 >100 >100 >100 >100 >100

 Mix 7 6 >100 30 >100 96 >100 >100 >100

 Mix 2 <1 >100 <1 >100 3 >100 10 >100

 Mix 2 Poor <1 >100 <1 >100 <1 >100 <1 >100

 Mix 4 <1 >100 <1 >100 13 >100 >100 >100

Atmospheric Mix 4 Poor <1 >100 <1 >100 <1 >100 <1 >100

(XS1) Mix 6 7 >100 70 >100 >100 >100 >100 >100

 Mix 6 Poor <1 >100 <1 >100 <1 >100 <1 >100

 Mix 8 42 >100 >100 >100 >100 >100 >100 >100

 Mix 8 Poor <1 >100 <1 >100 <1 >100 <1 >100

Exposure
class
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Table 5 summarises the time to corrosion initiation (years) 
for different cover depths (20 mm, 30 mm, 40 mm and 50 mm). 
Hydrophobic (silane) impregnation can effectively increase the time to 
corrosion initiation regardless of the binder type, water to binder ratio 
(w/b), and degree of curing. The increase in the initiation period due 
to silane treatment is more noticeable in the case of low cover depths  
(20 mm) compared to high cover depths (50 mm).
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